Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Mol Cell ; 84(7): 1188-1190, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579677

RESUMO

In his commentary in this issue of Molecular Cell,1 Struhl reasons that the term "intrinsically disordered regions" represents a vague and confusing concept for protein function. However, the term "intrinsically disordered" highlights the important physicochemical characteristic of conformational heterogeneity. Thus, "intrinsically disordered" is the counterpart to the term "folded, " with neither term having specific functional implications.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
2.
Cell Chem Biol ; 31(3): 487-501.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38232732

RESUMO

Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.


Assuntos
HIV-1 , Provírus , Humanos , Imagem Individual de Molécula , Proteínas/metabolismo , Peptídeos/metabolismo
3.
Nat Commun ; 14(1): 6931, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903771

RESUMO

Genetic code expansion (GCE) reprograms the translational machinery to site-specifically incorporate noncanonical amino acids (ncAAs) into a selected protein. The efficiency of GCE in mammalian cells might be compromised by cellular stress responses, among which, the protein kinase R(PKR)-dependent eIF2α phosphorylation pathway can reduce translation rates. Here we test several strategies to engineer the eIF2α pathway and boost the rate of translation and show that such interventions increase GCE efficiency in mammalian cells. In particular, addition of the N-terminal PKR fragment (1-174) provides a substantial enhancement in cytoplasmic GCE and also in GCE realized by OTOs (orthogonally translating designer organelles), which built on the principle of 2D phase separation to enable mRNA-selective ncAA incorporation. Our study demonstrates an approach for improving the efficiency of GCE and provides a means by which the power of designer organelles can be further optimized to tune protein translation.


Assuntos
Código Genético , Proteínas , Animais , Proteínas/metabolismo , Aminoácidos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Mamíferos/metabolismo
4.
Mol Cell ; 83(12): 1961-1963, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327772

RESUMO

Ataxin-2, an RNA-binding protein that is conserved across eukaryotes, is involved in stress granule assembly and age-associated neurodegenerative diseases. In this issue of Molecular Cell, Boeynaems et al.1 identify a short linear motif in ataxin-2 as a condensation switch, providing molecular insights into its essential role in cellular stress response.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/genética , Ataxina-1/metabolismo
5.
Nature ; 617(7959): 162-169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100914

RESUMO

The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs-about 50 MDa-is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4-11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides-in the terminology of the Flory polymer theory12-a 'good solvent' environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder-function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Proteínas Intrinsicamente Desordenadas , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Inteligência Artificial , Núcleo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Microscopia de Fluorescência
6.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909529

RESUMO

The HIV-1 envelope (Env) glycoprotein is conformationally dynamic and mediates membrane fusion required for cell entry. Single-molecule fluorescence resonance energy transfer (smFRET) of Env using peptide tags has provided mechanistic insights into the dynamics of Env conformations. Nevertheless, using peptide tags risks potential effects on structural integrity. Here, we aim to establish minimally invasive smFRET systems of Env on the virus by combining genetic code expansion and bioorthogonal click chemistry. Amber stop-codon suppression allows site-specifically incorporating noncanonical/unnatural amino acids (ncAAs) at introduced amber sites into proteins. However, ncAA incorporation into Env (or other HIV-1 proteins) in the virus context has been challenging due to low copies of Env on virions and incomplete amber suppression in mammalian cells. Here, we developed an intact amber-free virus system that overcomes impediments from preexisting ambers in HIV-1. Using this system, we successfully incorporated dual ncAAs at amber-introduced sites into Env on intact virions. Dual-ncAA incorporated Env retained similar neutralization sensitivities to neutralizing antibodies as wildtype. smFRET of click-labeled Env on intact amber-free virions recapitulated conformational profiles of Env. The amber-free HIV-1 infectious system also permits in-virus protein bioorthogonal labeling, compatible with various advanced microscopic studies of virus entry, trafficking, and egress in living cells. Amber-free HIV-1 infectious systems actualized minimal invasive Env tagging for smFRET, versatile for in-virus bioorthogonal click labeling in advanced microscopic studies of virus-host interactions.

7.
ACS Chem Biol ; 18(3): 443-448, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36889678

RESUMO

Due to their target specificity, antibody-drug conjugates─monoclonal antibodies conjugated to a cytotoxic moiety─are efficient therapeutics that can kill malignant cells overexpressing a target gene. Linking an antibody with radioisotopes (radioimmunoconjugates) enables powerful diagnostics and/or closely related therapeutic applications, depending on the isotope. To generate site-specific radioimmunoconjugates, we utilized genetic code expansion and subsequent conjugation by inverse electron-demand Diels-Alder cycloaddition reactions. We show that, using this approach, site-specific labeling of trastuzumab with either zirconium-89 (89Zr) for diagnostics or lutetium-177 (177Lu) for therapeutics yields efficient radioimmunoconjugates. Positron emission tomography imaging revealed a high accumulation of site-specifically 89Zr-labeled trastuzumab in tumors after 24 h and low accumulation in other organs. The corresponding 177Lu-trastuzumab radioimmunoconjugates were comparably distributed in vivo.


Assuntos
Imunoconjugados , Radioisótopos , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais , Trastuzumab , Linhagem Celular Tumoral , Marcação por Isótopo/métodos
8.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
9.
Angew Chem Int Ed Engl ; 62(12): e202215460, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585954

RESUMO

Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.


Assuntos
Aminoácidos , Triazóis , Domínios Proteicos , Peptídeos/química , Acetilação
10.
Methods Mol Biol ; 2563: 341-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227482

RESUMO

Engineering new functionalities into living eukaryotic systems is one of the main goals of synthetic biology. To this end, often enzyme evolution or de novo protein design is employed, which each have their own advantages and disadvantages. As complimentary tools, we recently developed orthogonally translating and film-like synthetic organelles that allow to create new enzyme functionalities based on spatial separation. We applied this technology to genetic code expansion (GCE) and showed that it is possible to equip eukaryotic cells with multiple orthogonal genetic codes that enable the specific reprogramming of distinct translational machineries, each with single-residue precision.In this protocol, we describe how synthetic organelles can be used to perform mRNA selective GCE and how they can be further developed to allow the simultaneous incorporation of distinct noncanonical amino acids (ncAAs) into selected proteins and how this can be used to label proteins selectively with fluorescent dyes via bioorthogonal chemistry.


Assuntos
Aminoacil-tRNA Sintetases , Células Artificiais , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Corantes Fluorescentes , Código Genético , Proteínas/química , RNA Mensageiro/genética
11.
J Mol Biol ; 434(8): 167454, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35033560

RESUMO

Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.


Assuntos
Bioengenharia , Proteínas Associadas aos Microtúbulos , Microtúbulos , Organelas , Biossíntese de Proteínas , Citoesqueleto/metabolismo , Humanos , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
12.
Biomacromolecules ; 23(1): 349-364, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34866377

RESUMO

Condensate formation of biopolymer solutions, prominently those of various intrinsically disordered proteins (IDPs), is often driven by "sticky" interactions between associating residues, multivalently present along the polymer backbone. Using a ternary mean-field "stickers-and-spacers" model, we demonstrate that if sticker association is of the order of a few times the thermal energy, a delicate balance between specific binding and nonspecific polymer-solvent interactions gives rise to a particularly rich ternary phase behavior under physiological circumstances. For a generic system represented by a solution comprising multiassociative scaffold and client polymers, the difference in solvent compatibility between the polymers modulates the nature of isothermal liquid-liquid phase separation (LLPS) between associative and segregative. The calculations reveal regimes of dualistic phase behavior, where both types of LLPS occur within the same phase diagram, either associated with the presence of multiple miscibility gaps or a flip in the slope of the tie-lines belonging to a single coexistence region.


Assuntos
Proteínas Intrinsicamente Desordenadas , Polímeros , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Solventes
13.
Curr Opin Chem Biol ; 64: 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34600419

RESUMO

The compartmentalization of specific functions into specialized organelles is a key feature of eukaryotic life. In particular, dynamic biomolecular condensates that are not membrane enclosed offer exciting opportunities for synthetic biology. In recent years, multiple approaches to generate and control condensates have been reported. Notably, multiple orthogonally translating organelles were designed that enable precise protein engineering inside living cells. Despite being built from only very few components, orthogonal translation can be engineered with subresolution precision at different places inside the same cell to create mammalian cells with multiple expanded genetic codes. This provides a pathway to engineer multiple proteins with multiple and distinct functionalities inside living eukaryotes and provides a general strategy toward spatially orthogonal enzyme engineering.


Assuntos
Condensados Biomoleculares , Células Eucarióticas , Animais , Células Eucarióticas/metabolismo , Código Genético , Mamíferos/genética , Organelas/metabolismo , Proteínas/metabolismo
14.
ACS Cent Sci ; 7(9): 1561-1571, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34584958

RESUMO

Small-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labeling via bio-orthogonal tetrazine chemistry combines minimal label size with rapid labeling kinetics. At the same time, fluorogenic tetrazine-dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine-dye conjugates with minimal distance between tetrazine and the fluorophore. Two synthetic routes give access to a series of cell-permeable and -impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as the dominant excited-state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multicolor and super-resolution STED, and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size.

16.
Cell ; 184(19): 4886-4903.e21, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433013

RESUMO

Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use these film-like organelles to equip eukaryotic cells with dual orthogonal expanded genetic codes that enable the specific reprogramming of distinct translational machineries with single-residue precision. The ability to spatially tune the output of translation within tens of nanometers is not only important for synthetic biology but has implications for understanding the function of membrane-associated protein condensation in cells.


Assuntos
Células Eucarióticas/metabolismo , Organelas/metabolismo , Biossíntese de Proteínas , Aminoácidos/metabolismo , Código Genético , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389669

RESUMO

Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico HSP70/metabolismo , Organelas/metabolismo , Imagem Individual de Molécula , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
19.
Biophys J ; 120(7): 1121-1122, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691085
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...